Environmental Geotechnical **Specialists**

REPORT

	job number		site address
	date		
	written by		
	checked by		issued by
i		÷	

Rogers Geotechnical Services Ltd Telephone 0843 50 666 87 Fax 0843 51 599 30 Email enquiries@rogersgeotech.co.uk www.rogersgeotech.co.uk

Offices 1 & 2, Barncliffe Business Park, Near Bank, Shelley, Huddersfield, West Yorkshire HD8 8LU.

QMS OH5A5 18001 REGISTERED RGS

		Contents	
			Page
1.		Introduction	2
2.		Limitations	2
3.	3.1	Fieldworks Windowless Sample Boreholes	2 2
	3.2 3.3	Dynamic Probes Light Cable Percussive Borehole	2 3 3 3
4.		Geology	3
5.	5.1 5.2	Strata Conditions General Strata Groundwater	4 4 4
6.	6.1	Insitu Testing Dynamic Penetration Tests	4 5 5
7.	7.1	Laboratory Testing – Geotechnical Geotechnical Properties	5 6
8.	8.1 8.2 8.3 8.4 8.5	Discussion of Ground Conditions – Geotechnical Foundations Volume Change Potential Ground-floors Access Road, Drive-ways and Hard-standing Effect of Sulphates	6 6 7 8 8 8
9.		Further Work	8
10.		References	9

	Appendices									
1.	Site Plan									
2.	 Windowless Sample Borehole Records Dynamic Probe Results 									
3.										
4. Light Cable Percussive Borehole Records										
5.	Laboratory Testing – Geotechnical									

Report no: J3954/17/E

Report on a Geotechnical Investigation									
Location:	Silsden Primary School Hawber Lane, Silsden, Keighley, BD20 (LR							
For: Bradford MDC									
Consultants:	Sir Frederick Snow and Partners								
Report No.	J3954/17/E	Report date: August 2017							
For and on behalf of Rogers Geotechnical Services Ltd									
RPah	RPalm Thran Scheer								

Rob Palmer MSc FGS Geotechnical & Environmental Engineer

Janeo // Imran Sakoor BEng Geotechnical Engineer

Report Summary ¹							
Item	Comments	Section					
Development	Construction of a new school.	1.					
Geology	Superficial geology – Till deposits. Solid geology – Millstone Grit Group.	4.					
Strata Conditions	Nominal thickness of topsoil over soft becoming firm silty slightly sandy slightly gravelly CLAY. NHBC Class – Low.	5. & 5.1					
Groundwater	3.0m (BH1).	5.2					
Foundation Design	Shallow strip or spread foundations constructed within the natural deposits (minimum depth 2.0m bgl).	8.1					
Ground-floor	Suspended ground-floor slab.	8.3					
Pavement Design	Assumed CBR = <2%	8.4					
Effect of Sulphates	DS-1, ACEC Classification AC-1s.	8.5					

¹ This summary should not be relied upon to provide a comprehensive review. All of the information contained in this document should be considered.

Rogers Geotechnical Services Ltd Telephone 0843 50 666 87 Fax 0843 51 599 30 Email enquiries@rogersgeotech.co.uk www.rogersgeotech.co.uk

1. Introduction

It is understood that the site is to be developed by the construction of a new primary school. Consequently, a site investigation has been undertaken in accordance with the instruction from the client. This work was required in order to determine the nature of the underlying soils, to assess their engineering properties and to assist in the design of safe and economical foundations for the proposed development. This report describes the work undertaken, presents the data obtained and discusses the ground conditions in relation to the proposed works.

2. Limitations

The recommendations made and opinions expressed in this report are based on the ground conditions revealed by the site works, together with an assessment of the site and of the laboratory test results. Whilst opinions may be expressed relating to sub-soil conditions in parts of the site not investigated, for example between borehole positions, these are for guidance only and no liability can be accepted for their accuracy.

This report has been prepared in accordance with our understanding of current best practice. However, new information or legislation, or changes to best practice may necessitate revision of the report after the date of issue.

3. Fieldworks

The fieldworks were undertaken on the 10th July 2017 and included the following:

- Four windowless sample boreholes.
- Four dynamic probes.
- Once light cable percussive borehole.

The investigatory locations are shown on the site plan which is presented in Appendix 1 to this report.

3.1 Windowless Sample Boreholes

These boreholes were sunk using a drive-in windowless sampler. The cores were undertaken in 1m lengths and reduced in diameter from 90mm for the first 1m through 80mm, 70mm and 60mm for subsequent 1m increments. The recovered cores were sealed and returned to the laboratory for logging and subsequent testing. The soils were described in general accordance with BS5930: 2015 and full descriptions are given on the windowless sample records which are presented in Appendix 2. Also included on these records are the core diameters and percentages of core recovered.

3.2 Dynamic Probes

Dynamic penetration tests were undertaken adjacent to the windowless sample boreholes in accordance with the procedure given in BS1377: 1990: Part 9, using the super heavy penetrometer (DPSH). This probe consists of a 63.5kg mass falling through 750mm onto an anvil, which drives a 50mm diameter cone into the ground. The number of blows required to drive the cone through successive 100mm increments are recorded as the N₁₀₀ values. The results of the dynamic penetration tests are tabulated and presented as bar charts of N₁₀₀ values versus depth in Appendix 3.

3.3 Light Cable Percussive Borehole

The borehole was sunk using a 1.5 tonne capacity light cable percussive (shell and auger) drilling rig with 150mm diameter tools and casing. During the boring operations, representative disturbed samples of the arisings were taken at regular depth intervals and sealed in plastic bags. Standard penetration tests (SPTs) were undertaken at regular depth increments; accept in cohesive materials where SPTs and undisturbed samples (U100s) were alternated. The SPTs were conducted in accordance with the procedures given in BS1377 : 1990 : Part 9 : 3.3, and the results are summarised on the borehole records. During this work an automatic trip hammer of 63.5kg falling through 760mm was employed to drive either a cone or split barrel sampler assembly into the ground, the barrel samples were retained in air tight plastic containers. It may be appreciated that the approximate cohesion of clay soils may be obtained by multiplying the equivalent SPT value by approximately 4.5 (after Stroud, 1975). The 100mm diameter undisturbed (U100) samples were sealed within a liner with wax and plastic caps. Groundwater levels were recorded when struck and boring stopped for a period of time to allow the water level to be monitored.

All recovered samples were returned to the laboratory for subsequent logging and testing. The soils were described in general accordance with BS5930: 2015, and full descriptions are given on the borehole records, which are presented as Appendix 4. Also included on these records are the water levels, casing details, standard penetration test results and a record of samples taken.

4. Geology

The available published geological data for the site has been examined and the following table presents the anticipated geology.

Table 1: Geological Data for the Site								
Strata Type	Strata Name ²	Previous Name ³	Description ²					
Superficial Geology	Till	Boulder Clay	Group of sediments laid down by the direct action of glacial ice. Variable lithology, usually sandy, silty clay with pebbles, but can contain gravel-rich, or laminated sand layers; varied colour and consistency (generic description).					

² Sources: British Geological Survey (NERC) Map Sheets 69; Bradford; Solid and Drift Edition, and Geology of Britain Viewer [*online resource from www.bgs.ac.uk*]

³ Sources: British Geological Survey (NERC) Lexicon of Named Rock Units [online resource from www.bgs.ac.uk]

Solid Geology	Millstone Grit Group	Millstone Grit	Fine- to very coarse-grained feldspathic sandstones, interbedded with grey siltstones and mudstones, with subordinate marine shaly mudstone, claystone, coals and seatearths.
			anu sealealths.

Markers within the same faulted block on the geological map suggest that the stratum generally dips at about 8° to the east.

5. Strata Conditions

In accordance with the geology of the area, the succession has been shown to include the following:

Table 2: Generalised Strata Profile									
Depth m below ground level to underside of layer	Strata Type	Positions Layer Revealed	Groundwater Strikes m below ground level						
0.1 – 0.2	Topsoil	All	None						
+2.0 - 8.50	Silty sandy gravelly CLAY	All	3.0 (BH1)						
3.6	Clayey silty sandy GRAVEL	BH1	None						
+10.45	MUDSTONE	BH1	None						

'+' denotes that the strata extended below the termination depth of the investigated positions, thus the extent of the deposit is only proven to the depths indicated.

5.1 General Lithology

Beneath a capping of topsoil, silty clay comprising variable amounts of sand and gravel throughout was revealed to the termination depths of boreholes WS1 to WS4 and to 8.5m in BH1. In addition, a 0.5mm thick lens of gravel was revealed within BH1 at 3.1m depth. It is considered that these soils are representative of the superficial till deposits which are indicated to underlie the site on the published geological map. Mudstone was revealed at the base of the superficial deposits within BH1 and was observed to the borehole termination at 10.45m.

5.2 Groundwater

The groundwater conditions entered on the borehole records are those observed at the time of the investigation. The normal rate of boring does not permit the recording of an equilibrium water level for any one strike. Moreover, groundwater levels are subject to seasonal variation or changes on local drainage conditions. Notwithstanding this, a groundwater strike was recorded within BH1 at a depth of 3.0m. It is considered that this water strike may not represent the phreatic surface, but perched groundwater. It should be appreciated that this water strike was recorded just above a 0.5m thick lens of gravel.

6. Insitu Testing

6.1 Dynamic Penetration Tests

Dynamic penetration tests were undertaken adjacent to the windowless sample borehole positions and a summary of the results is presented below:

Table 3: \$	Table 3: Summary of Dynamic Penetration Tests									
		Blows	/100mm							
Position	0 - 2	3 - 10	10+	Refusal type	Comments					
	Depth to wh	to which blow count range was observed (m)		(Effective/ Abrupt) ⁴						
DP1	1.8	2.2 4.3	2.5 5.0	Effective	Low results recorded to 1.8m whereupon results sharply increase, with stronger zone present until 2.6m. Results then gradually increase until refusal.					
DP2	1.7	4.3	5.3	Effective	Low results recorded to 1.8m whereupon results sharply increase, with stronger zone present until 2.5m. Results then gradually increase until refusal.					
DP3	2.0	2.5 4.9	2.7 6.0	Effective	Low results recorded to 2.0m whereupon results sharply increase, with stronger zone present until 2.7m. Results then gradually increase until refusal.					
DP4	1.9	5.0	6.3	Effective	Low results recorded to 1.8m. Results then gradually increase until refusal.					

7. Laboratory Testing - Geotechnical

The following programme of laboratory testing has been undertaken on samples obtained during this investigation:

- Moisture content determinations
- Index properties (1 point)
- Linear shrinkage
- Particle size distribution (Wet sieve)
- Soluble sulphate content
- pH value
- Undrained shear strength (Triaxial)

BS 1377: 1990: Pt2: 3.2 BS 1377: 1990: Pt2: 4.4, 5.3 & 5.4 BS 1377: 1990: Pt2: 6.3 BS 1377: 1990: Pt2: 9.2 BS 1377: 1990: Pt3: 5 BS 1377: 1990: Pt3: 9 BS 1377: 1990: Pt7: 8 & 9

The test results are presented in Appendix 5 and are summarised below:

Rogers Geotechnical Services Ltd Telephone 0843 50 666 87 Fax 0843 51 599 30 Email enquiries@rogersgeotech.co.uk www.rogersgeotech.co.uk

⁴ Abrupt refusal: obstruction or bedrock encountered. Effective refusal: +25 blows/100mm.

Table 4: Summary of Geotechnical Test Results									
Test type	Number of tests	Range of results		Comments					
Moisture content determinations	10	10	6 to 22%	Variable with depth.					
Index Properties (1 Point)	7	LL PL PI LS	24% to 38% 14% to 20% 10% to 18% 07% to 11%	Clay of low to intermediate plasticity. Consistency index 0.6 to 1.1 NHBC Class – Negligible to Low					
Particle size distribution (Wet sieve)	1	Cobbles Gravel Sand Fines	5% 74% 15% 6%	Gap-graded clayey sandy GRAVEL. Uniformity coefficient 140 Curvature coefficient 6.7					
Soluble sulphate & pH	2	SO₄ pH	<10 mg/l 7.4 & 7.8	DS-1, ACEC Classification AC-1s.					
Undrained shear strength (Triaxial)	1	C _u γ	42 kN/m ² 23.5 kN/m ³	Medium strength. Firm consistency.					

7.1 Geotechnical Properties

The idealised geotechnical properties employed in design are summarised below.

Table 5: Summary of Geotechnical Properties								
Property	Range of v	alues	Comments					
Volume change potential (NHBC)	Low		Silty slightly sandy slightly gravelly CLAY					
Shear strength parameters (at foundation level)	c _u 40	kN/m ²	Based on dynamic probes, triaxial compression test results and consistency indices					
Concrete classification	DC1		Natural ground locations (Static water)					

8. Discussion of Ground Conditions - Geotechnical

It is understood that this site is to be developed by the construction of a primary school with areas of hard-standing, soft landscaping and access roads/paths. The precise structural details are not currently known, thus the discussion below is of a generalised nature.

8.1 Foundations

It cannot be recommended that foundations be constructed directly within the topsoil or soft near surface soils revealed at this site. These soils are present in a weak and variable condition such that excessive total and or differential settlement could occur under moderately light surface loading.

The results of this investigation indicate that till deposits, comprising firm silty slightly sandy slightly gravelly clay will be revealed from depths of between 1.8m and 2.0m. It is considered that these soils

will provide a suitable bearing stratum, provided that the foundations are placed within soil generally described as being present in a firm insitu condition. It is considered that strip or spread foundations constructed within this material, at a minimum depth of say 2.0m, could be designed assuming an allowable increase in stress given in the following table:

Table 6: Allowable increase in stress								
Foundation Type	Strip Footings			Spre	Spread Footings			
Foundation Breadth	B (m)	0.6	1.0	1.5	1.0	2.0	3.0	
Foundation Depth	D (m)		2.0			2.0		
Allowable increase in stress	(kN/m²)	100	95	90	145	130	125	

The allowable increase in stress given above assumes a factor of safety of 3 against general shear failure, with cohesion of 40kN/m² at the foundation depths. Settlements at the above loading intensities should remain within tolerable limits for the type of structure proposed provided that the underlying soils are carefully inspected immediately final trimming has taken place. Should any soft or weak material be encountered they should be locally removed and replaced with lean-mix concrete or compacted granular soil. In addition, if the excavations are required to stand open for any period of time then a blinding layer of lean-mix concrete should be placed in the excavation bases. This expedient will reduce softening or loosening of the sub-grade due to the ingress of surface water.

Should seepages of groundwater be encountered it is considered that they could be dealt with using a simple form of de-watering. Such a system could include the excavation of sumps from which the water could be pumped.

The stability of the excavation faces cannot be guaranteed thus temporary support to the excavation faces may become necessary unless the foundations are constructed using trench-fill techniques. In this method the foundation trenches should be excavated, inspected and backfilled with concrete as a continuous operation. Under no circumstances should operatives be allowed to enter unsupported excavations.

8.2 Volume Change Potential

It should be appreciated that the cohesive soils revealed at this site possess a low volume change potential under the guidance of the NHBC standards. Therefore, it is will be necessary to ensure that the depths of the foundations are designed in accordance with the Chapter 4.2 of the NHBC standards⁵. The methodology provided in the guidance will require the identification of any trees, still present at, or recently removed from, the site and the distance from the proposed foundations. This may result in foundation depths greater than those given above and the requirement for heave protection to be employed against footings and below the underside of the floors and beams.

⁵ NHBC Standards, Chapter 4.2, *Building near trees*

8.3 Ground-floors

In light of the soft near surface soils, which were revealed to depths of up to 2.0m, it is not recommended that ground bearing ground floor slabs be employed. In this instance it would be necessary to suspend floors between foundation positions, such that the floor loads are transmitted via the foundations to competent soils at depth.

8.4 Access Roads, Drive-ways and Hard-standing

It is considered that any roads or hard-standing at the site could be constructed employing traditional pavement design. A design California Bearing Ratio (CBR) of <2% could be employed in the pavement design⁶. However, it is recommended that proof rolling of the sub-grade be undertaken to establish the suitability of the soils, to expose any soft or weak ground and to ensure the sub-grade is well compacted prior to construction. Any areas of soft or weak ground should be remediated by increasing the sub-base thickness. Alternatively, weak material could be locally removed and replaced with a compacted granular capping layer. If construction were to be undertaken during the winter or after periods of prolonged rainfall, it may be prudent to employ a geotextile and/or a geogrid between the sub-base and sub-grade.

8.5 Effect of Sulphates

In view of the nature of the underlying soils it is considered that the design sulphate class be assessed with reference to Table C1⁷, which is provided in BRE Special Digest 1, *Concrete in aggressive ground*: Part C. On the basis of this table and considering the soluble sulphate contents recorded, it can be shown that well compacted buried concrete should be designed in accordance with Class DS-1 requirements. Assuming static groundwater, the table also indicates that the aggressive chemical environment for concrete (ACEC) classification is AC-1s.

In order to evaluate the design chemical (DC) class for the buried concrete at this site reference should be made to Table D1⁸, which can be found in Part D, *Specifying concrete for general cast-in-situ use,* of BRE Special Digest 1. From this table it may be shown that for an intended working life of at least 50 years the concrete design class DC-1 is required

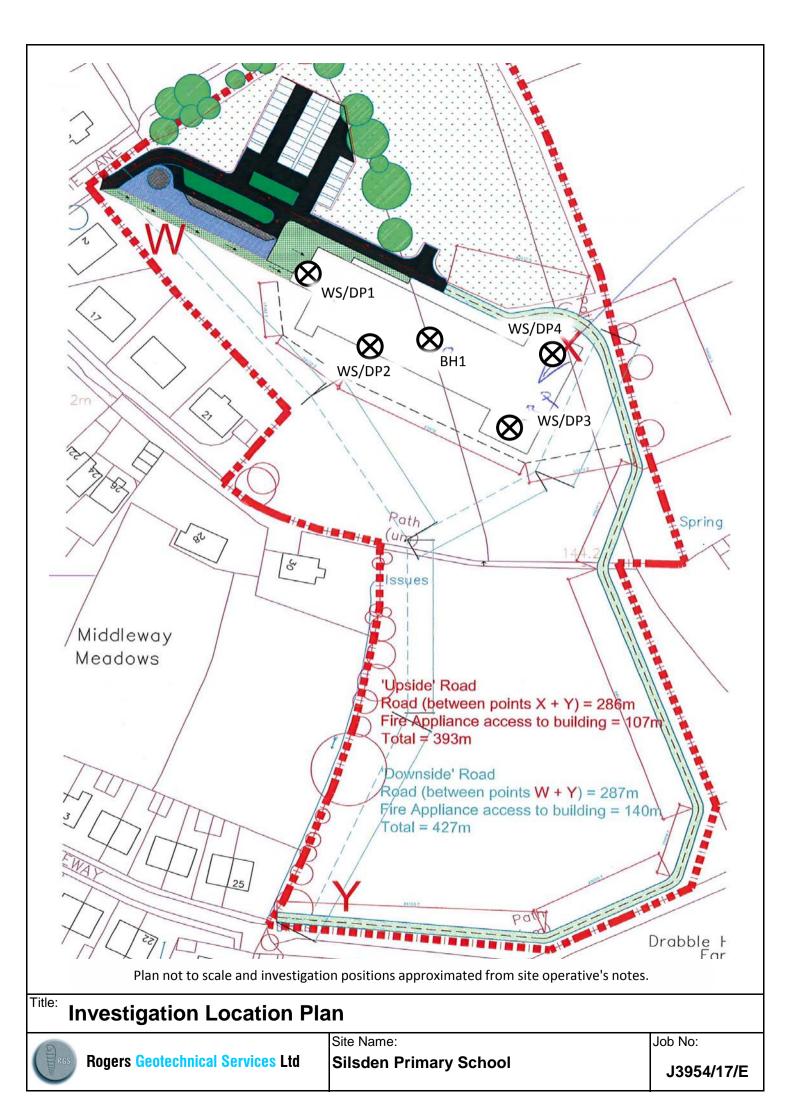
9. Further Work

- This report should be forwarded to the relevant authorities as soon as practicable to ensure they have sufficient time to review and discuss any issues.
- Detailed design of the sub-structure.

⁶ Table 13/2 Design Manual for Roads and Bridges (1995), HA44/9: Volume 4 Section 1 Part 1, Highways Agency.

⁷ Table C1, Aggressive Chemical Environment for Concrete (ACEC) classification for green field locations

⁸ Table D1, Selection of the DC Class and the number of APMs for concrete elements where the hydraulic gradient due to groundwater is 5 or less: for general in-situ use of concrete.



10. References

- British Standards Institution (1990) BS1377: British standard methods of test for soils for civil engineering purposes, B.S.I., London.
- British Standards Institution (2015) BS5930: Code of practice for site investigations, B.S.I., London.
- British Geological Survey (NERC) (2017), BGS, Keyworth.
 - Geology of Britain Viewer: (http://maps.bgs.ac.uk/geologyviewer_google/googleviewer.html)
 - Lexicon of Named Rock Units: (http://www.bgs.ac.uk/lexicon/)
- Building Research Establishment (BRE) Special Digest 1 (2005), Third Edition: Concrete in aggressive ground.
 - Part C: Assessing the aggressive chemical environment.
 - Part D: Specifying concrete for general cast-in-situ use.
- NHBC Standards, Chapter 4.2, *Building near trees*
- Design Manual for Roads and Bridges (1995), HA44/9: Volume 4 Section 1 Part 1, Highways Agency

Site Plan

Windowless Sample Borehole Records

										Borehole No	0.
	868					B	ore	ehol	le Log	WS1	
									0	Sheet 1 of	1
Project Nan	ne: Silsde	n Prima	ary Sch	nool	Project N		Co-	ords:		Hole Type	
			-		J3954/17	7/E				WLS Scale	
Location:	Keigh	ley					Lev	el:		1:50	
Client	0:1	f Dec -1	ord M				D-1	oo:	10/07/2017	Logged By	/
Client:		of Bradfo					Date	es.	10/07/2017	RAP	
Well Wate		amples			Festing	Depth	Level	Logond	Stratum Descriptic		
Strike	s Deptn (m)	Туре) Dia. (mm)		Results	(m)	(m)	Legenu			
Veli Strike	0.60	Type D	Dia. (mm) 90 80 70	TCR (%) 70 10 100	Results	(m) 0.20 1.00 2.00 2.60	(m)		TOPSOIL (Soft dark brown silty sandy CLAY with occasional ro Soft orangish brown mottled or slightly sandy slightly gravelly C cobble content. Gravel is sub- sub-angular fine to coarse of sa Sandstone cobbles. No recovery: Cobble blocking s Firm silty slightly gravelly CLAY cobble content. Gravel is sub- a coarse of sandstone. Cobbles of End of Borehole at 2.60	v slightly otlets). ange silty CLAY with low ounded and andstone. ample tube.	
Remarks										AGS	

													Borehole N	lo.
	RGS							B	or	eho	b	e Log	WS2	
												5	Sheet 1 of	f 1
Projec	t Name:	Silsde	en Prima	ary Sch	loor		ject No.		С	o-ords:			Hole Typ	е
						135	954/17/E		<u> </u>				WLS Scale	
Locatio	on:	Keigh	niey							evel:			1:50	
Client:		City	of Bradf	ord ME	C				D	ates:		10/07/2017	Logged B	sy.
						T = = 4 ² = = =							RAP	
Well	Water Strikes	Depth		Dia.	TCR	Testing Res	ults	Depth (m)	Lev (m		end	Stratum Descriptio	'n	
Well	Vater Strikes		Type D D D				ults	0.15 1.90 2.60 3.00	(m)			Stratum Description TOPSOIL (Soft dark brown silty sandy CLAY with occasional ro Soft orangish brown mottled ora- slightly sandy slightly gravelly C cobble content. Gravel is sub-ro sub-angular fine to coarse of sa Cobbles of sandstone. Firm dark grey silty slightly sam- gravelly CLAY. Gravel is sub-ro medium of various lithologies. Soft to firm dark grey silty very is with occasional horizons of fine End of Borehole at 3.00	dy slightly ange silty CLAY with low bunded and andstone. dy slightly unded fine to sandy CLAY sand.	
														9
Remai	rks												AG	S

													Borehole N	0.
	RGS							B	or	⁻ e	hol	le Log	WS3	
												0	Sheet 1 of	1
Projec	t Name:	Silsde	en Prima	ary Scł	nool		Project No. 3954/17/E			Co-c	ords:		Hole Type WLS	9
Locati	on:	Keigh	lev			J	3934/17/E			Leve	vi.		Scale	
Loodi	011.	Reigh	loy								<i>.</i>		1:50	
Client	:	City c	of Bradfo	ord ME	C					Date	s:	10/07/2017	Logged B RAP	у
		S	amnles	and I	n Situ	Testing							101	
Well	Water — Strikes	Depth	Туре	Dia.	TCR		esults	Depth (m)	Le Le	vel n)	Legend	Stratum Descript	ion	
		(m) 0.80 1.70 2.30	D D D	(mm) 90 80 70	(%) 100 90 85			0.10 0.40 2.00 3.00				TOPSOIL (Soft dark brown sil sandy CLAY with occasional r Soft orangish brown mottled c slightly sandy slightly gravelly cobble content. Gravel is sub- sub-angular fine to coarse of a Cobbles of sandstone.	CLAY. Gravel ar fine to	
														9
														10 -
Rema	rks												AGS	5

	6												Borehole N	0.
	RES							B	or	е	hol	le Log	WS4	
	-						D 1 (N)						Sheet 1 of	
Proje	ct Name	: Silsder	n Prima	ary Scł	nool		Project No. J3954/17/E		0	Co-c	ords:		Hole Type WLS	9
Locat	ion:	Keighl	01/							Leve	<u>.</u>		Scale	
LUCAL	011.	Keighi	ey							Leve	÷I.		1:50	
Client	:	City of	f Bradf	ord ME	ЭС				1	Date	es:	10/07/2017	Logged By	/
	<u> </u>					Teetie							RAP	1
Well	Water Strikes	Depth (m)	Type	Dia.	n Situ TCR (%)		g Results	– Depth (m)	Le (r	vel n)	Legend			
				90 80	(%) 100 40			2.00				TOPSOIL (Soft dark brown silt sandy CLAY with occasional ro Soft orangish brown mottled or slightly sandy slightly gravelly (soft grey mottled orangish bro slightly sandy slightly gravelly (cobble content. Gravel is sub- sub-angular fine to coarse of s Cobbles of sandstone. End of Borehole at 2.0	potlets). ange silty CLAY. wn silty CLAY with low ounded and andstone.	
														- - - 10 —
Rema	irks		I									I	AGS	} }

Dynamic Probe Results

RES				Pro	be	Log		Probe No. DP1 Sheet 1 of 1
Project Nam	e: Silsden Primary Sch		Project No. J3954/17/E	Co-c	rds:			Hole Type DCP
Location:	Keighley			Leve	1:			Scale 1:50
Client:	City of Bradford MD	С		Date	s: 10/	07/2017		Logged By KW
Depth			Blow	/s/100mm				Torque 50 (Nm)
(m) ₀	1	0	20	:	80	40		50 (NIII)
1	2							
	1 2 4 5							
- 2		11						
	9	11 10						
	4 3 3 4							
	4 3 3							
- 4	4 4 5							
	9	10						
 		10 10 11 10 10 10						
5			21	26				
-								
-								
- 6 -								
- - -								
-								
- - 7 -								
-								
- 8								
-								
9 - 								
- - -								
- - - 10 -								
Remarks:			Fall Height	750mm	Co	one Base Diamet	er 50.5mm	
			Hammer Wt	63.5kg	Fi	nal Depth	5m	AGS
1			Probe Type	DPSH-B				

RES		F	Probe Log	Probe No.
•				Sheet 1 of 1
Project Nam	e: Silsden Primary School	Project No. J3954/17/E	Co-ords:	Hole Type DCP
Location:	Keighley		Level:	Scale
				1:50 Logged By
Client:	City of Bradford MDC			KW
Depth (m)		Blows/100r		Torque (Nm)
-		20	30 40	50 (1411)
	2			
	2 2 2			
- 2				
	10			
	555			
- 3	5			
- 4				
	<u> </u>			
	10 10 10 10 10 10	7 15		
- 5		15 17 20 21 21 25		
		21 25		
-				
6 				
-				
-				
- 7				
-				
-				
- 8				
-				
-				
- - - 9				
- 10				
Remarks:		Fall Height750nHammer Wt63.50		5.3m
		Probe Type DPS		AGS

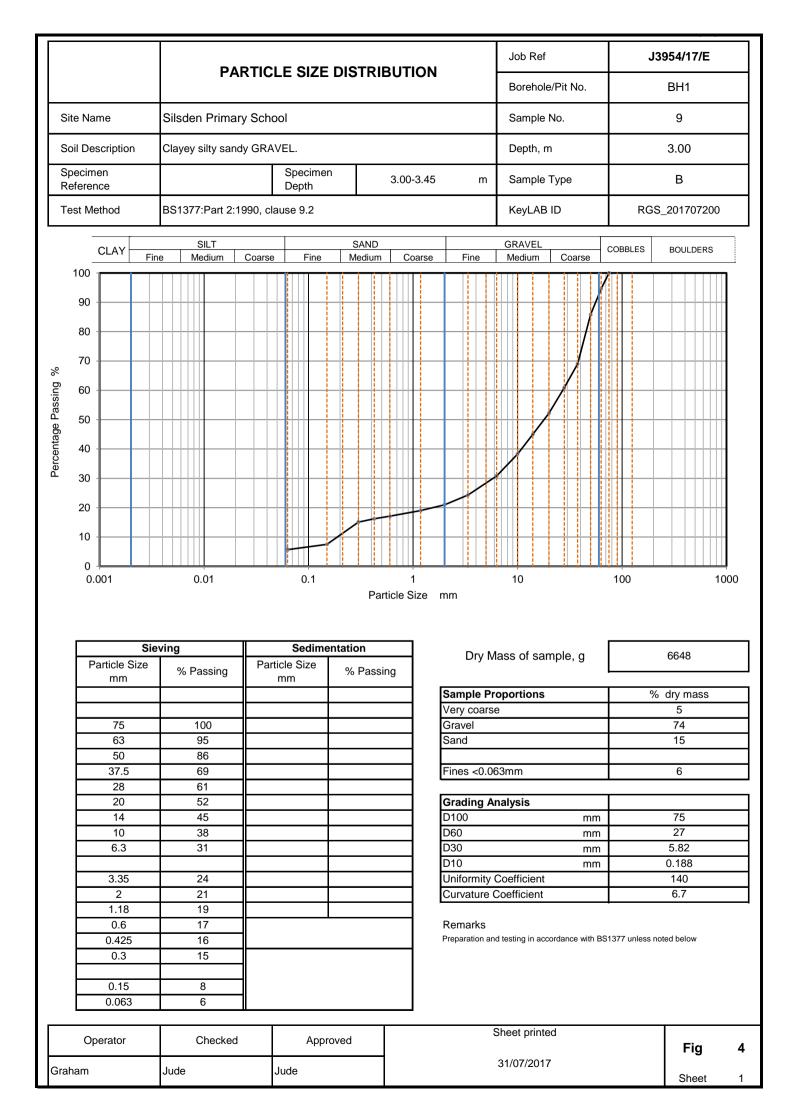
					F	robe No.
RGS		F	robe	Log		DP3
)			Т			neet 1 of 1
Project Nam	ne: Silsden Primary School	Project No. J3954/17/E	Co-ords:		ŀ	lole Type DCP
Location:	Keighley		Level:			Scale 1:50
Client:	City of Bradford MDC		Dates: 10	/07/2017	L	ogged By KW
Depth		Blows/100m	n			Torque
(m) (20	30	40		₅₀ (Nm)
- - - - - - -						
2						-
- - - - - - - - -						-
- - - - - - - -						-
5	8 11 11 10 10 13 13					-
6		17 19 23 26				-
- - - - -						
- - 7 - - -						-
- - - 8 - -						-
- - - - - - 9						
- - - - - - -						
— 10 Demorkei		Fall Height 750mr		one Base Diameter	50.5mm	1
Remarks:		Fall Height750mrHammer Wt63.5kg		inal Depth	50.5mm 6m	AGS
		Probe Type DPSH		·	-	AGS

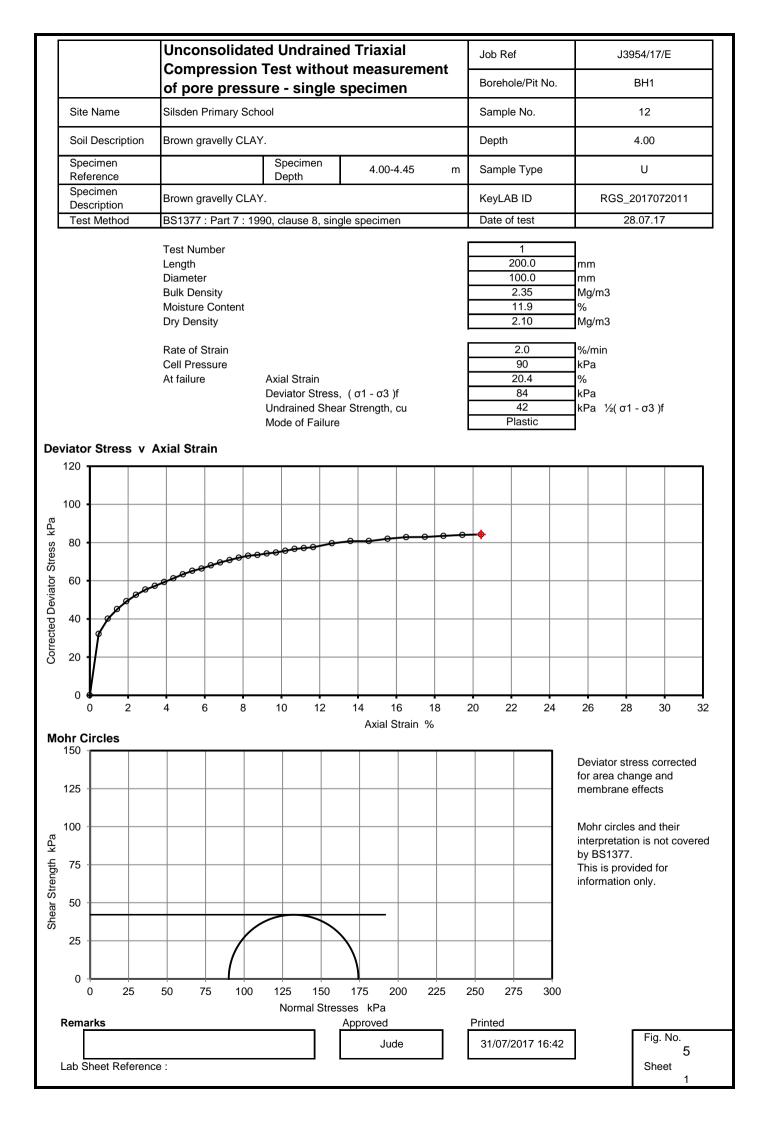
(2)						Probe No.
RGS			Probe	Log		DP4
•		Project No.				Sheet 1 of 1
Project Name:	Silsden Primary School	J3954/17/E	Co-ords:			Hole Type DCP
Location:	Keighley		Level:			Scale
				40/07/0047		1:50 _ogged By
Client:	City of Bradford MDC		Dates:	10/07/2017		KW
Depth (m)		Blows/1				Torque (Nm)
	10	20	30	40		50 (1111)
	2					
	2					
2	3					_
	8					
3	5 5 5 5					
	4					
	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5					
	5 6					
- 4	6 7					_
	10 9 10					
5	9					_
	12 12 14					
	14	19 19				
6		19 20 21 23				_
		23				
-						
-7 -						_
- 8 -						
E l						
-9						
- 10 -		F _U_U_U_U_U_U_U_U_U_U_U_U_U_U_U_U_U_U_U	////		FO F	
Remarks:		_	750mm 93.5kg	Cone Base Diameter Final Depth	50.5mm 6.3m	AGS
)PSH-B			AGS

Light Cable Percussive Borehole Records

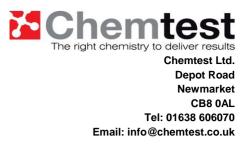
R	35			oject No.	Bo	reho	ole Log	Borehole N BH1 Sheet 1 of Hole Type	2
oject Nar	ne: Silsden Pi	rimary	School	0ject No. 954/17/E		Co-ords:	-	CP	3
cation:	Keighley					Level:		Scale 1:50	
ent:	City of Bra	adford	MDC			Dates:	10/07/2017 - 10/07/2017	Logged By RAP	у
ell Wate Strik		s and Type	In Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
			results		. ,		TOPSOIL (Soft dark brown silty slig	htly sandy	╞
	0.15 - 1.20 0.20 0.50	B D D		0.15			CLAY with occasional rootlets). Soft orangish brown mottled orange sandy slightly gravelly CLAY.	silty slightly	
	1.20 1.20 - 1.65	В	N=7 (1,2/1,2,2,2)	1.30		X X X	Soft grey mottled orangish brown si sandy slightly gravelly CLAY with lo	ty slightly	-
	1.70 2.00 - 2.45 2.00 - 2.50	D U B					content. Gravel is sub-rounded and fine to coarse of sandstone. Cobble sandstone.	sub-angular	
	2.60	D		2.60			Firm dark brown silty gravelly CLAY sub-rounded and sub-angular fine to		-
	Z 3.00 3.00 - 3.45	В	N=47 (5,15/25,8,7,7)	3.10			limestone. Medium dense brown clayey silty sa angular to rounded fine to coarse G	andy sub- RAVEL of	
	3.50 3.60 4.00 - 4.45			3.60			various lithologies. Medium cobble of Stiff dark brown silty gravelly CLAY. sub-rounded and sub-angular fine to various lithologies.	Gravel is	-
	4.50	D				× · · · · · · · · · · · · · · · · · · ·	Ū		
	5.00 5.00 - 5.45	В	N=28 (3,5/6,7,8,7)						
	5.50	D				× · · · · · · · · · · · · · · · · · · ·			
	6.00 - 6.45	U				× · · · · · · · · · · · · · · · · · · ·			
	6.50	D							
	7.50 7.50 - 7.95	В	N=30 (4,6/7,7,8,8)						
	8.50	D		8.50			MUDSTONE recovered as very stiff gravelly CLAY.	brown	
	9.00 9.00 - 9.45 9.50	B	N=47 (5,9/10,12,12,13)						
							Continued on next sheet		

									Borehole N	No.
	BRBS					Bo	reho	ole Log	BH1	
	-							-	Sheet 2 of	
Projec	t Name	: Silsden Pr	imary	School	Project No. J3954/17/E		Co-ords:	-	Hole Type CP	е
Locati	on:	Keighley					Level:		Scale 1:50	
Client	:	City of Bra	dford	MDC			Dates:	10/07/2017 - 10/07/2017	Logged B RAP	}y
Well	Water	Samples	s and i	In Situ Testing	Depth	Level	Legend	Stratum Descriptior	•	
	Strikes	Depth (m) 10.00	Туре		(m)	(m)	Legenu	Stratum Description	1	
		10.00 - 10.45	D	50 (6,10/50 for 255mm)						-
		10.00 - 10.45			10.45			End of borehole at 10.45 m		-
										-
										11 —
										-
										-
										12 —
										-
										-
										13 —
										-
										-
										14 -
										-
										15 -
										-
										-
										16 -
										-
										-
										17 —
										-
										-
										18 -
										-
										19 -
										-
Rema	rko									20 —
	waiting	for access. 1	hour o	digging service p	it. 0.5 hours p	oulling casi	ng and ba	ckfilling hole. 0.33 hours monitorir		S




Laboratory Testing - Geotechnical

				oject Name												
Project No. J3954	4/17/E		Project	Silsden Primary School Density W Passing LL PL PI Particle												
Hole No.			mple		Soil Description	Dens bulk	ity dry	W	Passing 425µm	LL	PL	ΡI	Particle density	Remarks		
	Ref	Тор	Base	Туре		Mg/m	13	%	%	%	%	%	Mg/m3			
BH1	5	1.70		D	Brown sandy CLAY.			16.0	78	34 -1pt	17	17				
BH1	8	2.60		D	Brown gravelly CLAY.			16.0	53	24 -1pt	14	10				
WS1	1	0.60		D	Orangish brown silty gravelly CLAY.			21.0	93	32 -1pt	18	14				
WS2	1	0.60		D	Orangish brown silty gravelly CLAY.			18.0								
WS2	2	1.20		D	Orangish brown silty gravelly CLAY.			17.0	94	29 -1pt	17	12				
WS2	3	2.10		D	Dark grey silty gravelly CLAY.			18.0								
WS2	4	2.60		D	Dark grey sandy CLAY.			20.0	67	26 -1pt	16	10				
WS3	1	0.80		D	Orangish brown silty gravelly CLAY.			18.0								
WS3	2	1.70		D	Brown gravelly CLAY.											
WS3	3	2.30		D	Brown gravelly CLAY.	wn gravelly CLAY. 17.0 71 34 -1pt 18 16										
All tests perfe	ormed	in acco	rdance v	vith BS	61377:1990 unless specifie	d otherw	ise									
Key								Date F	rinted		Appr	oved	Ву	Table		
Density		ment unles	s:	Liquid L 4pt con		e density nall pyknom	leter		31/07/20	17				1		
wd - wat wi - imn	er displ	acement	ess : 4pt cone unless : sp - small pyknometer 31/07/2017 cas - Casagrande method gj - gas jar 1pt - single point test Jude 1													


					Linear Sh	nrinkag	e - Summary o	of Result	S
Project No.			Projec	t Nam	е				
J395	4/17/E					Silsde	n Primary School		
Hole No.	Ref	Sar Top	nple Base	Туре	Soil Description	Material <425µm %	Preparation	Linear Shrinkage %	Remarks
BH1	5	1.70		D	Brown sandy CLAY.	76 78	Specimen prepared from natural material	_	
BH1	8	2.60		D	Brown gravelly CLAY.	53	Specimen prepared from natural material	7	
WS1	1	0.60		D	Orangish brown silty gravelly CLAY.	93	Specimen prepared from natural material	9	
WS2	2	1.20		D	Orangish brown silty gravelly CLAY.	94	Specimen prepared from natural material	7	
WS2	4	2.60		D	Dark grey sandy CLAY.	67	Specimen prepared from natural material	8	
WS3	2	1.70		D	Brown gravelly CLAY.	85	Specimen prepared from natural material	9	
WS3	3	2.30		D	Brown gravelly CLAY.	71	Specimen prepared from natural material	9	
Notes					7 - Dort 2 - 1000, alour - 0.5	o oprototo -	Date Printed App	roved By	Table
ests perforn otherwise	ieu in a	iccordan	ice with I	DO 13/	7 : Part 2 : 1990, clause 6.5 unles	s annotated	31/07/2017	Jude	2 sheet

Rogers Geotechnical Services Lt Offices 1&2, Barncliffe Business Park, Near Bank, Shelley, Huddersfield, HD8 8LU Project Name: Silsden Primary School		Barncliffe Business Park, Near Bank, Shelley, Huddersfield,			Inte	Interpretation of Moisture Content, Liquid and Plastic Limits B.S 1377: Part 2: 1990: 3.2, 4 and 5					J3954/17/E	
		nool		Fig.	Sheet.							
Location:									3 Input By:	1 Jude		
Client:		City of Brad	aford MD	С							Check By:	Jude
Location	Moisture Liquid Plastic Plasticit		Plasticity Index (IP)	Retained by 425mm	Modified (w) (IP)	Liquidity/ Consistency		Casagrande	N.H.B.C Class			
		(w)	(wL)	(wP)	Index (IP)	5y 423mm	(w')	(IP')	(IL) (IC)		Class	01000
	(m)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)		(%)
BH1	1.70	16	34	17	17	22	21	13	-0.1	1.1	CL	LOW
BH1	2.60	16	24	14	10	47	30	5	0.2	0.8	CL	*
WS1	0.60	21	32	18	14	7	23	13	0.2	0.8	CL	LOW
WS2	1.20	17	29	17	12	6	18	11	0.0	1.0	CL	LOW
WS2	2.60	20	26	16	10	33	30	7	0.4	0.6	CL	*
WS3 WS3	1.70 2.30	22 17	38 34	20 18	18 16	15 29	26 24	15 11	0.1 -0.1	0.9 1.1	C I C L	LOW LOW
70 60 50)							CV			CE	
						U-line C				[ME	E or MEQ	_
Plasticity Index % (4) 30 50)					Aline		MV or MVO				_
			, , , , , , , , , , , , , , , , , , , ,	CL	•	MH or	МНО					
10)		ML-or		MI or MIO						-	
	0	10	20	30	40	50 6	0 70	80	90	10	0 110	120

Report No.:	17-19107-1		
Initial Date of Issue:	26-Jul-2017		
Client	Rogers Geotechnical Services Ltd		
Client Address:	Unit 4, Barncliffe Business Park Near Bank Shelley Huddersfield West Yorkshire HD8 8LU		
Contact(s):	Rob Palmer		
Project	J3954/16/E Silsden Primary		
Quotation No.:		Date Received:	24-Jul-2017
Order No.:	0717-46	Date Instructed:	24-Jul-2017
No. of Samples:	2		
Turnaround (Wkdays):	3	Results Due:	26-Jul-2017
Date Approved:	26-Jul-2017		
Approved By:			
(

(CTD) and

Details:

Keith Jones, Technical Manager

Client: Rogers Geotechnical Services Ltd	Chemtest Job No.:				17-19107	17-19107
Quotation No.:	Chemtest Sample ID.:				487527	487528
Order No.: 0717-46	Client Sample Ref.:				BH1	WS3
	Client Sample ID.:				D1	D1
	Sample Type:				SOIL	SOIL
	Top Depth (m): Date Sampled:			0.50	0.40	
				20-Jul-2017	20-Jul-2017	
Determinand	Accred.	SOP	Units	LOD		
рН	М	2010		N/A	7.8	7.4
Sulphate (2:1 Water Soluble) as SO4	М	2120	g/l	0.010	< 0.010	< 0.010
Moisture	Ν	2030	%	0.020	14	15
Soil Colour	N	2040		N/A	Brown	Brown
Other Material	N	2040		N/A	Roots	Stones
Soil Texture	N	2040		N/A	Sand	Loam

Test Methods

SOP	Title	Parameters included	Method summary			
2010	pH Value of Soils	рН	pH Meter			
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.			
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930			
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES			

The right chemistry to deliver results

Report Information

Key

- U UKAS accredited
- M MCERTS and UKAS accredited
- N Unaccredited
- S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
- SN This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
- T This analysis has been subcontracted to an unaccredited laboratory
- I/S Insufficient Sample
- U/S Unsuitable Sample
- N/E not evaluated
- < "less than"
- > "greater than"

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.co.uk</u>